Statistics 1 Normal Distribution Questions

7	(a)	The weight, X grams, of soup in a carton may be modelled by a normal random
		variable with mean 406 and standard deviation 4.2.

Find the probability that the weight of soup in a carton:

- (i) is less than 400 grams; (3 marks)
- (ii) is between 402.5 grams and 407.5 grams. (4 marks)
- (b) The weight, Y grams, of chopped tomatoes in a tin is a normal random variable with mean μ and standard deviation σ .
 - (i) Given that P(Y < 310) = 0.975, explain why:

$$310 - \mu = 1.96\sigma \tag{3 marks}$$

- (ii) Given that P(Y < 307.5) = 0.86, find, to two decimal places, values for μ and σ .
- 2 The heights of sunflowers may be assumed to be normally distributed with a mean of 185 cm and a standard deviation of 10 cm.
 - (a) Determine the probability that the height of a randomly selected sunflower:
 - (i) is less than 200 cm; (3 marks)
 - (ii) is more than 175 cm; (3 marks)
 - (iii) is between 175 cm and 200 cm. (2 marks)
 - (b) Determine the probability that the mean height of a random sample of 4 sunflowers is more than 190 cm. (4 marks)

- **6** When Monica walks to work from home, she uses either route A or route B.
 - (a) Her journey time, X minutes, by route A may be assumed to be normally distributed with a mean of 37 and a standard deviation of 8.

Determine:

(i)
$$P(X < 45)$$
; (3 marks)

(ii)
$$P(30 < X < 45)$$
. (3 marks)

(b) Her journey time, Y minutes, by route B may be assumed to be normally distributed with a mean of 40 and a standard deviation of σ .

Given that
$$P(Y > 45) = 0.12$$
, calculate the value of σ . (4 marks)

- (c) If Monica leaves home at 8.15 am to walk to work hoping to arrive by 9.00 am, state, with a reason, which route she should take. (2 marks)
- (d) When Monica travels to work from home by car, her journey time, W minutes, has a mean of 18 and a standard deviation of 12.
 - Estimate the probability that, for a random sample of 36 journeys to work from home by car, Monica's mean time is more than 20 minutes. (4 marks)
- (e) Indicate where, if anywhere, in this question you needed to make use of the Central Limit Theorem. (1 mark)
- 7 (a) Electra is employed by E & G Ltd to install electricity meters in new houses on an estate. Her time, X minutes, to install a meter may be assumed to be normally distributed with a mean of 48 and a standard deviation of 20.

Determine:

(i)
$$P(X < 60)$$
; (2 marks)

(ii)
$$P(30 < X < 60)$$
; (3 marks)

- (iii) the time, k minutes, such that P(X < k) = 0.9. (4 marks)
- (b) Gazali is employed by E & G Ltd to install gas meters in the same new houses. His time, Y minutes, to install a meter has a mean of 37 and a standard deviation of 25.
 - (i) Explain why Y is unlikely to be normally distributed. (2 marks)
 - (ii) State why \overline{Y} , the mean of a random sample of 35 gas meter installations, is likely to be approximately normally distributed. (1 mark)

(iii) Determine
$$P(\overline{Y} > 40)$$
. (4 marks)

Statistics 1 Normal Distribution Answers

7 (a	Weight, $X \sim N(406, 4.2^2)$			
(i	$P(X < 400) = P\left(Z < \frac{400 - 406}{4.2}\right)$	M1		Standardising (399.5, 400 or 400.5) with 406 and $(\sqrt{4.2}, 4.2 \text{ or } 4.2^2)$ and/or (406 – x)
	= $P(Z < -1.428 \text{ to } -1.43)$ = $1 - P(Z < 1.428 \text{ to } 1.43)$	m1		$\Phi(-z) = 1 - \Phi(z)$
	= 0.076 to 0.077	A1	3	AWRT 0.07636
(ii	P(402.5 < X < 407.5) = P(X < 407.5) - P(X < 402.5) =	M1		Difference OE
	P(Z < 0.36) - P(Z < -0.83)	B2,1		AWRT; ignoring signs
	= 0.64058 - (1 - 0.79673) = 0.433 to 0.44	A1	4	AWFW 0.43731
(b)(i	$0.975 \Rightarrow z = 1.96$	M1		Accept explanation in words
	$P(Y < 310) = P\left(Z < \frac{310 - \mu}{\sigma}\right)$	M1		Standardising 310 using μ and σ
	$x = \mu + /\pm z\sigma$			Accept in words
	Thus $\frac{310 - \mu}{\sigma} = 1.96 \implies \text{result}$			Equating
	or	m1		AG
	$310 = \mu + 1.96\sigma \implies \text{result}$			Substitution
	NB: Working backwards from given equation ⇒ at most M1 M0 mo		3	
(ii)	$0.86 \implies z = 1.08$	B1		AWRT 1.0803
	$310 - \mu = 1.96\sigma$ $307.5 - \mu = 1.08\sigma$			
	$2.5 = 0.88\sigma$	M1		Attempt at solving 2 equations each of form $x - \mu = z\sigma$
	$\sigma = 2.84 \text{ to } 2.842$	A1		AWFW 2.841
	$\mu = 304.4 \text{ to } 304.5$	A1	4	AWFW 304.43
	Total		14	

2(a)	Height, $X \sim N(185, 10^2)$			
(i)	$P(X < 200) = P\left(Z < \frac{200 - 185}{10}\right)$	M1		standardising (199.5, 200 or 200.5) with 185 and ($\sqrt{10}$, 10 or 10 ²) and/or (185 – x)
	= P(Z < 1.5) = $\Phi(1.5) = 0.933$	A1 A1	3	CAO; ignore sign AWRT (0.93319)
(ii)	$P(X > 175) = P\left(Z > \frac{175 - 185}{10}\right)$	M1		standardising (174.5, 175 or 175.5) with 185 and ($\sqrt{10}$, 10 or 10 ²) and/or (185 – x)
	= P(Z > -1) = P(Z < 1) = 0.841	m1 A1	3	area change AWRT (0.84134)
(iii)	P(175 < X < 200) = (i) - [1 - (ii)]	M1		or equivalent
	= 0.93319 - [1 - 0.84134] = 0.774 to 0.775	A1√	2	AWFW (0.77453) √ on (i) and (ii) providing > 0
(b)	Mean of $\overline{X} = 185$	B1		CAO; may be implied by use in standardising
	Variance of $\overline{X} = \frac{10^2}{4} = 25$	B1		CAO; or equivalent
	$P(\overline{X} > 190) = P\left(Z > \frac{190 - 185}{5}\right)$	M1		standardising 190 with 185 and 5 and/or (185 – 190)
	$= P(Z > 1) = 1 - \Phi(1)$ = 0.159	A1√	4	AWRT (0.15866) √ on (a)(ii) if used
		Total	12	

6(a)(i)	$P(X < 45) = P\left(Z < \frac{45 - 37}{8}\right)$ = $P(Z < 1)$	M1		Standardising (44.5, 45 or 45.5) with 37 and $(\sqrt{8}, 8 \text{ or } 8^2)$ and/or $(37 - x)$
	= P(Z < 1)	A1		CAO; ignore sign
	= 0.841	A1	3	AWRT (0.84134)
(ii)	P(30 < X < 45) = (i) - P(X < 30)	M1		Used; OE
	= (i) - P(Z < -0.875)			
	P(30 < X < 45) = (i) - P(X < 30) $= (i) - P(Z < -0.875)$ $= (i) - [1 - (0.80785 to 0.81057)]$	m1		Area change
	= 0.648 to 0.652	A1	3	AWFW (0.65056)
(b)	$0.12 \Rightarrow z = 1.17 \text{ to } 1.18$	B1		AWFW; ignore sign (1.1750)
	$z = \frac{45 - 40}{\sigma}$	M1		Standardising 45 with 40 and σ
	= 1.175	m1		Equating z-term to z-value but not using 0.12, 0.88 or $ 1-z $
	$\sigma = 4.23 \text{ to } 4.28$	A1	4	AWFW

(c)	Route A: $P(X > 45) = 1 - (a)(i)$ Route B: $P(Y > 45) = 0.12$	B1		OE; must use 45
	Monica should use Route B (smaller prob)	↑Dep↑ B1√	2	√ on (a)(i); allow Route Y
(d)	Mean of $\overline{W} = 18$	В1		CAO; can be implied by use in standardising
	Variance of $\overline{W} = \frac{12^2}{36} = 4$	В1		CAO; OE
	$P(\overline{W} > 20) = P\left(Z > \frac{20 - 18}{2}\right)$	M1		Standardising 20 with 18 and 2 and/or (18 – 20)
	= P(Z > 1) = 0.159	A1√	4	AWRT (0.15866); √ on (a)(i) if used
(e)	In part (d)	B1	1	CAO; OE
	Total		17	

7(a) Time, $X \sim N(48, 20^2)$ (i) $P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ Standardising (59.5, 60 or 60.5) with 48 M1and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or (48 - x)P(Z < 0.6) = 0.725 to 0.73A1 2 AWFW (0.72575)(ii) P(30 < X < 60) =P(X < 60) - P(X < 30) =Difference or equivalent (i) - P(X < 30) =M1Standardising other than 60 and 30 (i) - P(Z < -0.9) = \Rightarrow max of M1 m1 A0 $(i) - \{1 - P(Z < +0.9)\} =$ m1Area change $0.72575 - \{1 - 0.81594\} =$ 0.54 to 0.542 AWFW 3 (0.54169)A1 (iii) $0.9 \Rightarrow z = 1.28$ to 1.282 B1 AWFW (1.2816)Standardising k with 48 and 20 M1Equating z-term to z-value; not using 0.9, m10.1, |1 - z| or $\Phi(0.9) = 0.81594$ AWFW A1

(b)	Time, $Y \sim N(37, 25^2)$			
(i)	Use of $\mu - (2 \text{ or } 3) \times \sigma = 37 - (50 \text{ or } 75)$	M1		Or equivalent justification
	< 0 ⇒ likely negative times	B1	2	for (likely) negative times
(ii)	Central Limit Theorem or $n \text{ large } /> 30$	B1	1	
(iii)	Variance of $\overline{Y} = \frac{25^2}{35}$	В1		OE; stated or used
	$P(\overline{Y} > 40) = P\left(Z > \frac{40 - 37}{25/\sqrt{35}}\right) =$	M1		Standardising 40 with 37 and $25/\sqrt{35}$ and/or $(37-40)$
	P(Z > 0.71) = 1 - P(Z < 0.71) =	m1		Area change
	0.238 to 0.24	A1	4	AWFW (1 - 0.76115)
	Total		16	